
www.manaraa.com

A Formal Treatment of Remotely KeyedEncryption?Matt Blaze1 Joan Feigenbaum1 Moni Naor21 AT&T Labs { Research180 Park AvenueFlorham Park, NJ 07932 USAfmab,jfg@research.att.com2 Dept. Applied Math. and Computer ScienceWeizmann Institute of ScienceRehovot 76100, Israelnaor@wisdom.weizmann.ac.ilAbstract. Remotely keyed encryption schemes (RKESs), introduced byBlaze [6], support high-bandwidth cryptographic applications (such asencrypted video conferences) in which long-lived secrets (such as users'private keys) never leave lower-bandwidth environments such as securesmart-cards. We provide a formal framework in which to study the secu-rity of RKESs and give RKESs that satisfy our formal security require-ments. Our RKESs are e�cient in that the amount of communicationand computation required of the smart-card is independent of the in-put size. In one proof of security, we use the pseudorandom permutationframework of Naor and Reingold [18] in an essential way.Keywords: Block Ciphers, Pseudorandomness, Remotely Keyed Encryption,Session Keys, Smart-cards1 IntroductionNo cryptographic protocol is stronger than the mechanism protecting its se-cret keys. However, in many computing and communication systems, there is no\safe place" in which secret keys can be stored and cryptographic computationscan be performed. This is especially true of modern networked computers; insome sense, every computer that communicates extensively with the world isbound at some point to be partly controlled by an unfriendly entity. Therefore,it is natural to consider adding an external, special-purpose device, such as asmart-card or a PCMCIA card, for storing cryptographic keys and computingcryptographic functions. Because they have only one purpose and communicate? These results were presented in preliminary form at the Eurocrypt '98 conference(Helsinki, Finland), in June 1998. The third author was supported by a RAND2grant from the EC.

www.manaraa.com

only via a limited set of functions, such devices can be made much more se-cure than their general-purpose host machines. Furthermore, the di�culty andexpense of designing and building a special-purpose device can be justi�ed, be-cause the device could be used in a wide variety of cryptographic protocols inall networked computers.Unfortunately, it is not always practical to rely on such devices to perform allsensitive cryptographic operations. Inexpensive smart-cards, for example, havelimited bandwidth, memory, and processor speed. If the host computer used suchdevices simple-mindedly, by just encrypting all external communication and alldisk tra�c, then the bandwidth of the link between the host and the crypto-graphic module would have to be at least as high as that between the hostand the outside world. Even if the engineering problems of developing inexpen-sive high-bandwidth, high-performance cryptographic modules were completelysolved, it would still be the case that, whenever the host's link to the outsideworld was upgraded, the modules and the secret keys they store would haveto be changed, because cryptographic modules are typically designed never toreveal their keys.This paper provides a formal treatment of the remotely keyed encryptionproblem: how to do bulk encryption and decryption for high-bandwidth applica-tions in a way that takes advantage of both the superior power of the host andthe superior security of the smart-card? If adversary A takes control of the hostfor a certain period, then clearly A will obtain whatever plaintext or ciphertextis resident in the host during that period. We would like to say formally that thisis all it obtains: Once A loses control of the host, it cannot compute anythingthat it couldn't compute before it took control, except for the values it obtainedexplicitly while it was in control. (See Figure 1.)Note that we are concerned with attacks on the host but not with directattacks on the card; we assume that the card owner wants to safeguard the\remote keys" and that an attacker can only communicate with the card viaits o�cial communication channels. See, e.g., Boneh et al. [7] and Biham andShamir [5], for a discussion of direct attacks on cards. Note as well that theremotely keyed encryption problem is di�erent from the one of having a smart-card take advantage of a host's superior processing power in order to do a public-key computation without leaking the input to the host. For a discussion ofthe (well-studied) problem of host-assisted public-key cryptography, see e.g.,Feigenbaum [10], Matsumoto et al. [17], and the references therein.Furthermore, note that the goal of a remotely keyed encryption scheme(RKES) is not \session-key exchange" between two di�erent hosts each con-nected to a card, where the two cards share a key. In an RKES application, suchas the encryption of disk tra�c, there is only one host; it encrypts at some pointin time and then decrypts the stored ciphertext later. In settings in which thereason for exchanging keys is encryption, an RKES may replace a session-keyexchange protocol and has the advantage of no interaction; however, there areother reasons for key exchange. See, for example, Shoup and Rubin [19] for arigorous treatment of session-key exchange (following Bellare and Rogaway [3]),2

www.manaraa.com

Host

High Bandwidth Channel

Crypto

Device

Fig. 1. High-level structure of a Remotely Keyed Encryption Schemein which the adversary is similar in power to the one we consider here. TheShoup-Rubin protocol requires several rounds of communication between thehosts.We give formal de�nitions that capture the notion of \security" needed in ourscenario and RKESs that satisfy the de�nitions. One of our schemes producesciphertext of exactly the same length as the corresponding plaintext, and oneproduces ciphertext that is slightly longer. The length-preserving scheme has theadvantage of allowing applications to adhere to strict formatting requirements,such as may be imposed on the encryption of disk tra�c or data packets, whilethe length-increasing scheme has the advantage of satisfying a more stringentde�nition of security. Both of our RKESs have the desirable property that, forany input length, the amount of communication and computation that theyrequire of the smart-card is independent of the input size.HistoryBlaze [6] was the �rst to use the term \remotely keyed encryption" and to focusattention on the fact that many high-bandwidth applications need symmetric-key encryption schemes that store long-lived secret keys in low-bandwidth smart-cards.1 He proposed a speci�c scheme but did not give a formal statement of1 Blaze [6] used the phrase \remotely keyed encryption protocol," and we use \remotelykeyed encryption scheme." The terms are interchangeable.3

www.manaraa.com

the properties that an RKES should satisfy. Although the scheme in [6] does notsatisfy the formal security requirements that we give in this paper, the basic ideaof the scheme is sound, and we use it as a starting point in the design of an RKESthat does satisfy our formal requirements. One weakness of the original schemein [6] is that it may enable an adversary that has controlled the host during minteractions with the card subsequently to \forge" a plaintext/ciphertext pairthat is not one of the m pairs he has obtained during the interaction.Lucks [16] �rst noted that the RKES in [6] was not completely satisfactory;in particular, he noted the forgery weakness just described. Lucks [16] attemptedto formalize the security properties that an RKES should have and to constructschemes that have them. Although the properties proposed in [16] are indeeddesirable, we believe that the overall formalism and construction are awed.Roughly speaking, [16] proposed that an RKES should have three properties:(i) Forgery security: If the adversary has controlled the host for m interactions,then it cannot produce m+ 1 plaintext/ciphertext pairs; (ii) Inversion security:Access to encryption should not imply the ability to decrypt and vice versa;(iii) Pseudorandomness: The encryption function should be a pseudorandompermutation. We suggest that an RKES might have these three properties butstill be \insecure" in an intuitive sense.In fact, the scheme in [16] is a good example of one that has properties (i),(ii), and (iii) but is intuitively insecure. That scheme uses the �rst two plaintextblocks in order to de�ne an encryption key for the rest of the message; theencryption of these two blocks depends on the entire message, thus allowingproperty (i) to be satis�ed. However, because the encryption key depends onlyon the �rst two plaintext blocks, an arbitrarily large set of messages all of whichstart with the same two blocks will always be encrypted with the same key.This is not a hypothetical situation: A set of �les in a computer �le system, forexample, might always start with the same few bytes of structural information.An adversary that controls the host during the encryption or decryption of one�le in such a set could subsequently decrypt the encryption of any �le in the set.More fundamentally, the framework in [16] fails to recognize that it is nontrivialin this scenario to give a precise meaning to the statement that \the encryptionfunction is a pseudorandom permutation." Once the adversary has witnessed onehost/card interaction, it can subsequently distinguish between the encryptionfunction and a random permutation by asking for the value on a single point.We thus conclude that the formalism in [16] is inadequate. In this paper, wedevelop a formal framework that is both more precise and more stringent thanthose in the previous literature. In particular, we de�ne pseudorandomness in away that is meaningful for remotely keyed encryption.OutlineWe present our formalism in full detail in Section 3 below. A secure length-increasing RKES is given in Section 4, and a secure length-preserving RKES isgiven in Section 5. 4

www.manaraa.com

2 Notation, Terminology, and Building BlocksDe�nitions of standard cryptographic and complexity theoretic terms can befound in, for example, Goldreich [11], Luby [15], and Naor and Reingold [18]. Thefollowing is a description of the building blocks and terminology used throughout.{ The plaintext and the ciphertext are, respectively, X and Y . Usually, bothare given in blocks and hence are denoted X = (X1; : : : ; Xn) and Y =(Y1; : : : ; Yn), where each of Xi and Yi is in f0; 1gb.{ The encryption and decryption functions of a block cipher are E and D.ES(Xj) denotes the encryption of plaintext block Xj with encryption keyS, i.e., ES ; DS : f0; 1gb 7! f0; 1gb and DS(ES(Xj)) = Xj .The security property required of ES(�) is that it should be a strong pseudo-random permutation, i.e., that any probabilistic, polynomial-time adversarygiven access to ES(�) andDS (�) cannot distinguish them from a truly randompermutation. A thorough treatment of strong pseudorandom permutationsis given by Luby [15], who calls them \super" pseudorandom permutations.{ A pseudorandom function FS : f0; 1gb 7! f0; 1gb; it may or may not beidentical to the encryption function E of the block cipher. (Note that ev-ery pseudorandom permutation is also a pseudorandom function, where theadded advantage of a distinguisher is bounded by m2=2b.) We use FS , ratherthan ES , in situations that never require the function to be inverted.{ A length-preserving method GS for encrypting an n-block plaintext (X1, : : :,Xn) using encryption key S. GjS(X1; : : : ; Xn) denotes the jth block of theresulting ciphertext. The corresponding decryption function is denoted ĜS ,and the jth block of the plaintext that results from decrypting (Y1; : : : ; Yn)is denoted ĜjS(Y1; : : : ; Yn).The security requirement for GS is that, for any X1; X2; : : : ; Xn, if S ischosen uniformly at random, then GS(X1; : : : ; Xn) is pseudorandom (i.e.,indistinguishable from a random string of similar length). We impose a sim-ilar requirement on ĜS. Possible realizations of GS are:� Apply a pseudorandom generator to S and Xor the resulting sequencewith X1; : : : ; Xn.� Use ES with some sort of chaining, e.g., CBC. The security of such anoperation follows from [2].{ A collision-intractable hash function H : f0; 1g� 7! f0; 1gb. \Collision-intrac-tability" means that it is computationally infeasible to �nd distinct X andX 0 such that H(X) = H(X 0).{ The adversary is in general an oracle machine M where M (f;f�1) that hasaccess to the function pair (f; f�1). As in [18], M may submit two forms ofqueries to the function-pair oracle: A query of the form (+; x) results in theanswer f(x), and one of the form (�; y) results in the answer f�1(y).As usual, various parameters are needed in order to express things in fulldetail. In particular, there is an underlying size (security) parameter u, and thereare three polynomially bounded functions that measure the key length �(u), the5

www.manaraa.com

block length b(u), and the number of blocks n(u). The total length of the input toany of our protocols is a polynomial function of �(u), b(u), and n(u). For clarityof presentation, we suppress these parameters whenever possible, but they arean implicit part of everything that follows. For example, the statement \F isa pseudorandom function" means that F : f0; 1g�(u) � f0; 1gb(u) ! f0; 1gb(u)is a pseudorandom function generator, in the sense of [12] or [15, Lecture 12].Similarly, additional (but standard) detail is also required to say precisely whatis meant by a \random" function, permutation, or function pair. These detailscan be found in, for example, [11,15,18].In our schemes, the card stores the keys of several functions and permuta-tions. Our \physical assumption" is that the adversary cannot read these keysdirectly. Note that we do not need the assumption that intermediary values, i.e.,results of applying these cryptographic primitives, remain secret.3 De�nitions of Secure Remotely Keyed EncryptionIntuitively, we would like an RKES to resist the following form of attack. Ad-versary A may gain control of the host temporarily. During this host phase ofhis attack, A may have a total of m interactions with the card, where m is poly-nomially bounded. He may send any message to the card during one of theseinteractions and may deviate from the protocol. However, since m is an upperbound on the total number of interactions, A obtains at most m plaintexts andm ciphertexts during the host phase. After these m interactions with the card,A loses control of the host. He should subsequently have no advantage in hisattempts to �nd the encryption (resp., decryption) of plaintexts (resp., cipher-texts) other than those m that he found explicitly during the host phase.One step in formalizing this intuition is to make precise what we mean by\no advantage." We will do this in terms of pseudorandomness. That is, theencryption and decryption protocols of the RKES compute some function pair(f; f�1), and this function pair should appear truly random to A. During thehost phase, A learns the value of f and f�1 each at m points. This should givehim \no advantage" in the sense that if, in a distinguishing phase that takes placeafter he loses control of the host, A is asked to distinguish between (f; f�1) anda truly random function pair, he should be able to do so only with negligibleprobability.Because the amount of communication between the host and the card inan e�cient RKES should be much shorter than the input length, there is acomplication that is missing in the standard de�nition of pseudorandomness. If,during the host phase, A learns the value of f on m points X1; X2; : : : ; Xm,then f almost certainly does not look random to A on these points, becausethe transcript of the host phase and the description of the protocol constitute ashort description of (X1; f(X1)); (X2; f(X2)); : : : ; (Xm; f(Xm)). Our formalismaddresses this by requiring that, between the host phase and the distinguishingphase, a nondeterministic choice occurs: Either (f; f�1) is replaced with a truly6

www.manaraa.com

random function pair or it is kept the same. A's challenge is thus to decidewhether or not a switch occurred or not.Now a new complication arises: We cannot allow the adversary, during thedistinguishing phase, to query the oracle about any of the m plaintexts and mciphertexts that he obtained during the host phase. If the adversary A doesso and receives the same answers as he did the �rst time around, then A willknow, with high probability, that there was no switch and (f; f�1) remainedunchanged. If A receives a di�erent answer on one of these queries during thedistinguishing phase than he did during the host phase, then he can concludewith certainty that the oracle is not (f; f�1).We would like therefore to \�lter" those values that appeared in the hostphase. The problem with making this discussion rigorous is that the adversary'sactions during the host phase do not necessarily correspond to speci�c inputs,and certainly there are many inputs that yield the same (host,card) transcript.To overcome this problem, we introduce an arbiter into our de�nition of secureremotely keyed encryption. The purpose of the arbiter, which we denote by B,is to make sure that A does not ask during the distinguishing phase any of thequeries that it asked during the host phase. B should be a simple function ofthe transcript of the communication that occurred during the host phase andshould have limited �ltering ability. Instead of saying that the inputs queriedduring the host phase are excluded (which is not well-de�ned), we say that if Ahas had m interactions with the card during the host phase, then B is allowed to�lter no more than m queries during the distinguishing phase. Note that thereis no need actually to implement this arbiter; rather, a (host,card) protocol issecure if there exists such an arbiter.This discussion can be summarized as follows.De�nition 1. A length-preserving RKES is a pair of protocols, one for en-cryption and one for decryption, to be executed by a host and a card. The lengthof a ciphertext must be the same as that of the corresponding plaintext. TheRKES is secure if there is a polynomial-time arbiter B that can enforce thefollowing restriction on any probabilistic, polynomial-time adversary A and anypolynomial bound m: During the host phase, A may play the role of the hostin a total of m interactions with the card. During this phase, A may send anymessage to the card and does not necessarily follow the encryption or decryptionprotocol. Between the host phase and the distinguishing phase, a nondeterminis-tic choice is made between continuing to use the RKES or switching to a randomfunction pair. The arbiter B receives as input the transcript of the host-phasecommunication between the host and the card. During the distinguishing phase,A may run any probabilistic, polynomial-time test T that submits plaintexts orciphertexts to B; on at most m of the plaintexts and m of the ciphertexts, Bmay choose to run the RKES, even if a switch to a random function pair wasmade between phases. Otherwise the plaintext (resp. ciphertext) is given to theencryption (resp. decryption) protocol if no switch was made between phasesand to the random function f (resp. f�1) if a switch was made. The di�er-ence between the probability that T accepts on a continuation of the RKES and7

www.manaraa.com

the probability that T accepts on a switch to a random function pair must benegligible.A natural way to relax the above requirement is to allowB to reject polynomi-ally in m many input/output, instead of exactly m. However, the constructionsgiven in Section 5 achieve the stricter notion.We now turn our attention to length-increasing RKESs. These should beeasier to construct than length-preserving RKESs. However, we can require ad-ditional security properties of length-increasing RKESs that are not achievablein the length-preserving case, and thus we need a second de�nition. In the length-increasing case, each plaintext may correspond to multiple ciphertexts, becausethe ciphertext space is bigger than the plaintext space. We can (and should) use aprobabilistic encryption algorithm that induces, for each plaintext, a probabilitydistribution on a corresponding set of ciphertexts [13]. Furthermore, if cipher-texts are of length c(u), it need not be the case that every string in f0; 1gc(u) isa legitimate encryption of some plaintext.Because we have these two types of exibility that are not present in thelength-preserving case, we can impose two additional security properties. The�rst is semantic security, as de�ned by Goldwasser and Micali [13] { \whatever ise�ciently computable given the ciphertext is e�ciently computable without it."We prefer to work with the equivalent \real-or-random" de�nition: No proba-bilistic, polynomial-time adversary can distinguish between a random ciphertextand the encryption of a chosen plaintext, even if it had prior access to the en-cryption and decryption mechanisms (see Bellare et al. [1]). To make use of theproperty that not every string in f0; 1gc(u) must correspond to a plaintext, wegive the decryption algorithm the option of outputting a distinguished string\invalid." Intuitively, the decryption algorithm is supposed to return the cor-rect plaintext when given as input a ciphertext that has been produced by theencryption algorithm but to return \invalid" when given anything else.The second security requirement that we impose on length-increasing RKESsbut not on length-preserving ones is self-validation: Even if it had prior accessto the encryption and decryption mechanisms, a probabilistic, polynomial-timeadversary should not be able to generate a new valid ciphertext, i.e., one thatit did not obtain explicitly from the encryption algorithm and on which thedecryption algorithm does not output \invalid." Note that the combination ofthese two properties yields a private-key non-malleable cryptosystem as de�nedby Dolev et al. [8]2, in which it is infeasible not only to compute anything about aplaintext but also to generate the ciphertext of a related message. It is worth not-ing that self-validation together with semantic security is a stricter requirementthan non-malleability: In a non-malleable cryptosystem, the adversary cannotproduce ciphertexts of unrelated messages, but he may be able to produce ci-phertexts of random messages.For length-increasing RKESs, we would like to say that, after the host phase,the adversary cannot tell whether he is interacting with the real protocols or with2 The private-key case is discussed only in the expanded version.8

www.manaraa.com

a \random, self-validating black box," given that an arbiter is �ltering basedon a transcript of the host-phase communication. A \random, self-validatingblack box" contains an encryption box and a decryption box. On any input ofthe appropriate plaintext length, the encryption box outputs a random stringof the appropriate ciphertext length. The decryption box outputs \invalid" onall inputs, except those that were previously output by the encryption box,and on those it outputs the input string on which the encryption box gavethis output. Note that such a pair of boxes is not a encryption scheme in theusual sense: It is not \memoryless" but rather assumes that the encryption anddecryption boxes can remember and \communicate about" the strings they haveprocessed. The challenge in creating a self-validating encryption scheme is toenable the decryption algorithm to know when to output \invalid" even thoughit cannot communicate with the encryption algorithm, and neither algorithmcan remember which strings it has previously processed.Self-validating encryption makes sense only when the ciphertext length c(u)exceeds the plaintext length by enough to make a random string in f0; 1gc(u)\invalid" except with negligible probability. This is not an onerous requirement,as we will see in Section 4.De�nition 2. A length-increasing RKES is a pair of protocols, one for en-cryption and one for decryption, to be executed by a host and a card. The lengthof a ciphertext is greater than the length of the corresponding plaintext. If itsinput is a ciphertext that has previously been output by the encryption protocol,the decryption protocol outputs the corresponding plaintext; otherwise, it mayoutput \invalid" (and in fact will do so on most inputs). The RKES is secureif there is a polynomial-time arbiter B that can enforce the following restrictionon any probabilistic, polynomial-time adversary A and any polynomial boundm: During the host phase, A may play the role of the host in m interactionswith the card. During this phase, A may send any message to the card and doesnot necessarily follow the encryption or decryption protocol. Between the hostphase and the distinguishing phase, a choice is made between continuing to usethe RKES or switching to a random, self-validating black box that has not yetreceived any queries. B gets as input the transcript of the host-phase communi-cation between the host and the card. During the distinguishing phase, A mayrun any probabilistic, polynomial-time test T that submits plaintexts or cipher-texts to B. On at most m of the ciphertexts (but not the plaintexts), B maychoose to run the RKES, even if a switch was made between phases. Otherwisethe plaintext (resp. ciphertext) is given to the encryption (resp. decryption) pro-tocol if no switch was made between phases and to the random, self-validatingblack box if a switch was made. The di�erence between the probability that Taccepts on a continuation of the RKES and the probability that T accepts on aswitch to a random, self-validating black box must be negligible.Three remarks are in order about this de�nition. First, it generalizes thecorresponding de�nitions in standard (i.e., not remotely keyed) encryption. Ifone �xes m = 0, i.e., makes the host phase trivial, then De�nition 1 reduces to9

www.manaraa.com

the de�nition of a strong pseudorandom permutation. Similarly, in De�nition 2,�xing m = 0 yields the de�nition of a semantically secure and self-validatingprivate-key cryptosystem. Second, note that an important di�erence between thelength-preserving case and the length-increasing one is that, in the latter, thearbiter does not have the power to route plaintexts to the RKES. It may only doso with ciphertexts. The third remark worth making is that these de�nitions areconcerned with security rather than e�ciency. Note, for instance, that a strongpseudorandom permutation evaluated solely by the card satis�es De�nition 1.Clearly, an RKES is most useful if the computational, memory, and bandwidthdemands on the card are small. In particular, it is desirable for all to be slowlygrowing functions of the block length b and key length � and to be independentof n, the number of blocks in the plaintext, as they are in the schemes givenbelow. Finally, we assume that the length of the message is known. It may beimplicitly known, e.g., the size of a disk sector or a data packet, or it may beconveyed by some other protocol. Note that it is possible to set the protocolsin Sections 4 and 5 so that they yield a di�erent permutation for each messagelength.4 A Secure, Length-Increasing RKESWe �rst describe a simple scheme (Scheme I1) that is not secure in the sense ofDe�nition 1. The adversary may create arbitrarily many \valid" ciphertexts. Atthe start of the execution of the encryption protocol, the host obtains a randomor pseudorandom number S by the best method at its disposal; alternatively,the card could provide S to the host. The RKES requires only that S can beencrypted using the block encryption algorithm E. The private key stored inthe smart-card is denoted by k1. The idea of the protocol is simple: The hostgenerates a session-key and the card provides its encryption.Scheme I1: Insecure, length-increasing RKES:Encryption protocol: input X1; : : : ; Xn; output Y0; Y1; : : : ; YnI1-0 Generate SI1-1 Host ! Card: SI1-2 Card: Y0 Ek1(S)I1-3 Card ! Host: Y0I1-4 Host: set Y0 as received message; For j 1 to n, Yj GjS(X1; : : : ; Xn).Decryption protocol: input Y0; Y1; : : : ; Yn; output X1; : : : ; XnI1-5 Host ! Card: Y0I1-6 Card: S Dk1(Y0)I1-7 Card ! Host: SI1-8 Host: For j 1 to n, Xj ĜjS(Y1; : : : ; Yn).10

www.manaraa.com

Clearly, Scheme I1 makes no attempt to reject invalid ciphertexts. Any se-quence Y0; Y1; : : : ; Yn will be decrypted. Furthermore, the adversary may \forge"as many plaintext/ciphertext pairs as he wishes, following a host phase in whichhe carries out just one execution of either the encryption protocol or the decryp-tion protocol.Scheme I2 is a secure, length-increasing RKES based on the same basic ideaas Scheme I1, i.e., using the luxury of an additional ciphertext block to store anencryption of a session key. To achieve self-validation, it uses another additionalciphertext block to store a value that an adversary cannot compute withoutrunning the encryption protocol, because of the properties of the cryptographicbuilding blocks E, F , G, and H. The private key stored in the smart-card ispartitioned into 4 parts, denoted k1; k2; k3, and k4, that play di�erent roles inthe protocols. As mentioned in Section 2, the pseudorandom function F is usedwhen inversion is not needed, and the encryption functions E and G are usedwhen it is.We have designed Scheme I2 for maximumclarity and have not sought to op-timize it in several ways that could save constant factors in space and thus mightbe relevant in applications with very tight constraints. For example, we have notattempted to minimize the number of private-key components (k1; : : : ; k4) or thenumber of distinct cryptographic building blocks (E, F ,G, andH), because suchoptimizations would not help to illustrate the overall structure that an RKESshould have in order to satisfy our formal de�nition. It is possible, however, touse the same key component or the same building block in multiple roles.Scheme I2: Secure, length-increasing RKES:Encryption protocol: input X1; : : : ; Xn; output t; Y0; Y1; : : : ; YnI2-0 Generate SI2-1 Host: For j 1 to n, Yj GjS(X1; : : : ; Xn)I2-2 Host: h H(Y1; Y2; : : : ; Yn)I2-3 Host ! Card: S; hI2-4 Card: Y0 Ek1(S)I2-5 Card: t Fk4(Fk3(Y0) � Fk2(h))I2-6 Card ! Host: Y0; tDecryption protocol: input t; Y0; Y1; : : : ; Yn; output X1; : : : ; Xn or \in-valid"I2-7 Host: h H(Y1; Y2; : : : ; Yn)I2-8 Host ! Card: Y0; h; tI2-9 Card: If t 6= Fk4(Fk3(Y0)� Fk2(h)) Then S \invalid"Else S Dk1(Y0)I2-10 Card ! Host: SI2-12 Host: If S 6= \invalid"Then fFor j 1 to n, Xj ĜjS(Y1 : : : ; Yn); Output (X1; : : : ; Xn)gElse Output \invalid" 11

www.manaraa.com

As required by De�nition 2, the arbiter B does not �lter queries of theform (+; (X1; : : : ; Xn)) during the distinguishing phase; it just sends them tothe encryption protocol if no switch was made between phases and to a ran-dom, self-validating black box if a switch was made. On queries of the form(�; (t; Y0; Y1; : : : ; Yn)), B computes h = H(Y1; : : : ; Yn) and checks whether (h;Y0; t) occurs in the transcript of the host phase. If it does, then B routes thequery to the decryption protocol, regardless of whether a switch was made be-tween phases; if it doesn't, then B routes it either to the decryption protocolor to the random, self-validating black box, depending on whether a switch wasmade.Theorem 3. Scheme I2 is a secure, length-increasing RKES.Proof. The de�nitions of the cryptographic building blocks E, F , and G implystraightforwardly that any sequence of encryptions is indistinguishable from arandom one (and hence from the output of a random, self-validating box). Con-sider the case of decryption queries. Suppose that such a query (�; (t; Y0; Y1;: : : ; Yn)) does not correspond to an encryption query (+; (X1; : : : ; Xn)) thatoccurred earlier in the distinguishing phase and that (H(Y1; : : : ; Yn); Y0; t) didnot appear in the host phase (i.e., the query is not �ltered by the arbiter). Arandom, self-validating black box will answer such a query by saying \invalid."The real protocol will also answer \invalid" if t 6= Fk4(Fk3(Y0)� Fk2(h)), whereh = H(Y1; : : : ; Yn), but it will produce a decryption if t = Fk4(Fk3(Y0)�Fk2(h)),or in other words if t \validates" (Y0; h). Thus an adversary can tell whether aswitch was made between phases only if it can �nd (t; Y0; Y1; : : : ; Yn) such thatt = Fk4(Fk3(Y0) � Fk2(H(Y1; : : : ; Yn))) by some method other than submissionof a query (+; (X1; : : : ; Xn)).The collision-intractability of H implies that, with all but non-negligibleprobability, the adversary cannot �nd (Y1; : : : ; Yn) 6= (Y 01 ; : : : ; Y 0n) such thatH(Y1; : : : ; Yn) = H(Y 01 ; : : : ; Y 0n). Therefore the adversary is left with two pos-sibilities: (i) Find \colliding pairs" (Y0; h) 6= (Y 00 ; h0) such thatFk3(Y0)� Fk2(h) = Fk3(Y 00)� Fk2(h0);or (ii) Guess the value of Fk4(Fk3(Y0) � Fk2(h)) where the value Fk3(Y0) �Fk2(h) did not appear in Step I2-5 of any previous query during the Host orDistinguishing Phases. However, the probability of (ii) is bounded by 1=2b plusthe probability of distinguishing Fk4 from a truly random function. Thereforewe concentrate on the probability of �nding colliding pairs. Our formal claimis:Lemma 4. Let A be a probabilistic, polynomial-time adversary that has m1interactions with the card during the host phase and makes m2 oracle queriesduring the distinguishing phase. Then the probability that A can produce col-liding pairs is at most (m1+m2)22b + ", where b is the block length and " is anupper bound on the probability that A can distinguish at least one of the twopseudorandom functions Fk2 and Fk3 from random functions.12

www.manaraa.com

Proof. The argument that collisions are hard to �nd, even during the host phase,has a standard form: First show that the probability would be negligible if theF 's were truly random functions and then use a \hybrid argument" to show thatit remains negligible when the cryptographic F 's are used. (For an explanationof hybrid arguments, see Goldreich [11]).Suppose that Fk2 and Fk3 are truly random functions. Then all the valuesFk2(Y0) and Fk3(h) are random values. The probability that (Y0; h) 6= (Y 00 ; h0)but Fk3(Y0)�Fk2 (h) = Fk3(Y 00)�Fk2 (h0) is 1=2b. There are (m1+m2)2 possiblepairs. (A similar argument was applied to cipher-block chaining by Bellare etal. [2].) utTherefore, with all but negligible probability, the most that the adversarycan obtain during the distinguishing phase is a collection of encryptions (anddecryptions that it could have obtained anyway because they were submitted bythe adversary as queries during the host phase). We conclude that it cannot dis-tinguish between a random, self-validating black-box and the original encryptionalgorithm. The analysis further implies that the maximum number of di�erentdecryption queries that the arbiter will reroute is bounded by m1. ut5 A Secure, Length-Preserving RKESWe now present Scheme P, a secure, length-preserving RKES. The card's secretkey has four components k1; k2; k3; and k4. As in the previous section, we havedesigned Scheme P for maximum clarity and have not sought to optimize by, forexample, minimizing the number of distinct key components or cryptographicbuilding blocks.The scheme is best understood as part of the Naor-Reingold [18] frameworkfor constructing and proving the security of pseudorandom permutations. Inthis framework, the pseudorandom permutation � is the composition of threepermutations: � � p�12 � J � p1. (See Figure 2.) In general, p1 and p�12 are\lightweight," and J is where most of the work is done. In our setting, J will bethe part performed mostly by the host, and p1 and p�12 will be done mostly bythe card.The \heavyweight" building block J should behave as a random permutationon most inputs. An important step in applying the Naor-Reingold framework isthe identi�cation of a collection of input-output sequences that are called \J-good." For an input-output sequence h(X1; Y 1), : : :, (Xm ; Y m)i to be J-good,PrJ [Y i = J(Xi); 1 � i � m] should be close to 2�`�m, where ` = n � b, i.e., theprobability should be close to what it would be if J were a truly random function.The role of the permutations p1 and p2 is to ensure that, with overwhelmingprobability, the inputs and outputs to J form an J-good sequence, even if theinputs to � are chosen by an adaptive adversary, under a chosen plaintext andciphertext attack. Thus a sequence is J-good or not based on p1 and p2.Scheme P: Secure length-preserving RKES:Encryption protocol: input X1; : : : ; Xn; output Y1; : : : ; Yn13

www.manaraa.com

p1

p2

-1

Output

Input

J

Fig. 2. High-level structure of pseudorandom permutation in Naor and Reingold'sFrameworkP1 Host: hx H(X2; : : : ; Xn)P2 Host ! Card: hx; X1P3 Card: W EFk1 (hx)(X1)P4 Card: Z Ek2(W)P5 Card: S Fk3(W)P6 Card ! Host: SP7 Host: For j 2 to n, Yj GjS(X2; : : : ; Xn).P8 Host: hy H(Y2; : : : ; Yn)P9 Host ! Card: hyP10 Card: Y1 EFk4 (hy)(Z)P11 Card ! Host: Y1Decryption protocol: input Y1; : : : ; Yn; output X1; : : : ; XnP12 Host: hy H(Y2; : : : ; Yn)P13 Host ! Card: hy; Y1P14 Card: Z DFk4 (hy)(Y1)P15 Card: W Dk2(Z)P16 Card: S Fk3(W)P17 Card ! Host: SP18 Host: For j 2 to n, Xj ĜjS(Y2; : : : ; Yn).P19 Host: hx H(X2; : : : ; Xn)P20 Host ! Card: hx 14

www.manaraa.com

P21 Card: X1 DFk1 (hx)(W)P22 Card ! Host: X1In our construction, p1 and p2 produce output that depends on all the inputblocks, but they change only the �rst block. That isp1 : (X1; X2; : : : ; Xn) 7! (W;X2; : : : ; Xn);where W is a function of X1 and hx = H(X2; : : : ; Xn), andp2 : (Y1; Y2; : : : ; Yn) 7! (Z; Y2; : : : ; Yn);where Z is a function of Y1 and hy = H(Y2; : : : ; Yn).Good sequences will be those in which di�erent X1; : : : ; Xn and X 01; : : : ; X 0nare mapped by p1 to di�erent W andW 0, and similarly di�erent Y 's are mappedby p2 to di�erent Z's. To obtain permutations p1 and p2 with the right properties,we de�ne a new primitive called non-colliding encryption.De�nition 5. A non-colliding encryption scheme is a pair of keyed functionsCk : f0; 1gb � f0; 1gb 7! f0; 1gb and Ĉk : f0; 1gb � f0; 1gb 7! f0; 1gb with thefollowing two properties.1. For all V 2 f0; 1gb and h 2 f0; 1gb, the functions satisfy Ĉk(Ck(V; h); h) = Vand Ck(Ĉk(V; h); h) = V . (Note that this property allows us to use C to\store" V , provided h is retrievable.)2. Let A be a probabilistic, polynomial-time adversary that is allowed to queryCk and Ĉk adaptively. We say that \(V; h) appears in a (polynomial-length)sequence of queries" if A asks for Ck(V; h) directly or if V is the reply tosome direct query Ĉk(U; h). If the key k is chosen at random, then A hasonly a negligible probability of �nding two pairs (V; h) 6= (V 0; h0) such that(a) Ck(V; h) = Ck(V 0; h0), and (b) at least one of (V; h) and (V 0; h0) did notappear in the sequence of queries.In Scheme P, the permutations p1 and p2 are determined by (Ck; Ĉk). Forexample, p1 : (X1; X2; : : : ; Xn) 7! (W = Ck1(X1;H(X2; : : : ; Xn)); X2; : : : ; Xn);and p2 is de�ned similarly. The \storage" capability of non-colliding encryptionensures that p1 is indeed a permutation, because p�11 : (W;X2; : : : ; Xn) 7! (X1 =Ĉk1(W;H(X2; : : : ; Xn)); X2; : : : ; Xn). Note that p1, p2, and their inverses can becomputed e�ciently, for any non-colliding encryption scheme (Ck; Ĉk), by thehost and the card together. The permutation J depends on the two key com-ponents k3 and k4. J : (W;X2; : : : ; Xn) 7! (Z; Y2; : : : ; Yn); where Z = Ek3(W),(Y2, : : : ; Yn) = GFk4 (W)(X2, : : : ; Xn), and GS : f0; 1g(n�1)b 7! f0; 1g(n�1)b. Theoverall permutation computed by the encryption protocol is � = p�12 � J � p1,and this too can be computed e�ciently by the (host, card) pair.Our main result is as follows.Theorem 6. Scheme P is a secure, length-preserving RKES.15

www.manaraa.com

Proof. To prove this result, we must de�ne an arbiter B, construct a non-collidingencryption scheme, and apply the Naor-Reingold framework [18]. Applying theframework entails identifying J-good sequences and proving that the overallconstruction gives a strong pseudorandom permutation. The identi�cation of J-good sequences has to take into account the \two-phase" aspect of the de�nitionof security of RKESs; this is a complication that is not present in the originalNaor-Reingold paper. We address each of these issues in turn.Arbiter:B records all the pairs (hx; X1) and (hy; Y1) that appear in the host phase.The list of pairs is easy to deduce from the transcript. During the distinguishingphase, B does the following for each encryption query (+; (X1; : : : ; Xn)). First,it computes hx = H(X2; : : : ; Xn). If the pair (hx; X1) appeared in the hostphase, then B answers the query using the encryption protocol; otherwise, ituses either the encryption protocol or the random permutation, depending onwhether the decision between phases was to continue or to switch. Similarly,when it receives a decryption query (�; (Y1; : : : ; Yn)) during the distinguishingphase, B �rst computes hy = H(Y2; : : : ; Yn); then, if the pair (hy; Y1) appearedin the host phase, B uses the decryption protocol to answer the query, andotherwise it uses either the decryption protocol or the random function inverse,depending on whether the decision between phases was to continue or to switch.Non-colliding encryption:Assume without loss of generality that the key k required by the non-collidingencryption scheme is the same length (b bits) as the key for the block cipher E. Ifthe block-cipher keys are too short, they can be stretched using a pseudorandomgenerator, and if they are too long, they can be truncated. Recall that F is apseudorandom function.NCE Construction 1: Let Ck(V; h) = EFk(h)(V) and Ĉk(V; h) = DFk(h)(V).Lemma 7. NCE Construction 1 is a non-colliding encryption scheme.Proof. This construction obviously satis�es Property 1 of De�nition 5.To prove that is also satis�es Property 2, consider an adaptive adversary Athat makes a sequence of m queries to Ck and Ĉk. Let "1m (resp. "2m) be anupper bound on the probability that, with m queries, A can distinguish F froma truly random function (resp. an upper bound on the probability that, with mqueries, A can distinguish a collection ofm+2 pseudorandom permutations froma collection of m + 2 truly random permutations). Then A's chance of �ndingtwo pairs (V; h) 6= (V 0; h0) such that (a) Ck(V; h) = Ck(V 0; h0), and (b) at leastone of (V; h) and (V 0; h0) did not appear in the sequence of queries is at mostm22b + 12b �m + "1m + "2m: (1)In see this, compare (Ck; Ĉk) to the following process (C 0; Ĉ0), which is de-�ned in terms of random functions and permutations rather than pseudorandomfunctions and permutations. Let E1; E2; : : : ; Em+2 be random permutations, and16

www.manaraa.com

let D1; D2; : : : ; Dm+2 be the corresponding inverse permutations. The process(C 0; Ĉ0) acts as follows on A's ith query (Vi; hi), given that (V1; h1), (V2; h2), : : :,(Vi�1; hi�1) were A's i � 1 previous queries. Suppose that hi is the jth distinctelement in the set fh1, h2, : : :, hig. If (Vi; hi) is a query is to C 0, then respondwith Ej(Vi), and if it is a query to Ĉ0, then respond with Dj(Vi).We would like to bound the probability that, after m queries, A can �nd(V; h) 6= (V 0; h0) such that C 0(V; h) = C 0(V 0; h0) but at least one of (V; h) or(V 0; h0) did not appear in the sequence (V1; h1), (V2; h2), : : :, (Vm; hm). Sup-pose that h is the jth1 distinct element and h0 is the jth2 distinct element amongh1; h2; : : : ; hm; h; h0. If j1 = j2, we are done, because Ej1(V) 6= Ej1(V 0). Other-wise, assume without loss of generality that it is the query (V; h) that did notappear in the sequence. Then the probability that Ej1(V) = Ej2(V 0) is at most1=(2b � m), because the value of Ej1 has been speci�ed on at most m points,and Ej1(V) is uniformly distributed among the remaining 2b �m points in therange.We now bound the probability that a polynomial-time adversary can dis-tinguish between (truly random) (C 0; Ĉ0) and (pseudorandom) (Ck; Ĉk). Essen-tially, we use a hybrid argument. If, instead of the pseudorandom Fk, a trulyrandom function f were used, the probability that the adversary could �nd twodi�erent h and h0 such that f(h) = f(h0) would be at most m2=2b. If this doesnot happen, then the randomness of f implies that the keys of the pseudoran-dom permutations are random; if the adversary could distinguish between sucha process and (C 0; Ĉ0), then it could distinguish between a collection of m pseu-dorandom permutations and a collection of m truly random permutations { thishappens with probably at most "2m. Distinguishing between the case in which arandom f is used and the one in which a pseudorandom Fk is used adds proba-bility at most "1m, yielding (1). utWe provide another construction of non-colliding encryption . The proof isbased on generating many \independent" permutations from a single one, as inEven and Mansour [9] and Kilian and Rogaway [14]. It may be the preferredconstruction if the smart-card constraints make it very di�cult to change a keyto a permutation.NCE Construction 2: Let k = (k1; k2; k3), where k2 and k3 are used as keysto the pseudo-random function F and k1 as a key to E. The idea is to apply Fto h and obtain a \mask" for encrypting V . Formally, Ck(V; h) = Ek1(Fk2(h)�V)� Fk3(h), and Ĉk(V; h) = Dk1 (Fk3(h) � V)� Fk2(h).Lemma 8. NCE Construction 2 is a non-colliding encryption scheme.Proof. Even and Mansour showed that, if E : f0; 1gb 7! f0; 1gb is a random per-mutation and m pairs h(I1; O1); (I2; O2); : : : ; (In; On)i are chosen independentlyand uniformly at random, then the permutations Ei(X) = E(X � Ii) � Oi areindistinguishable from random. The pseudorandomness of Fk2 and Fk3 allows usto repeat the argument of Lemma 7. utJ-good sequences: 17

www.manaraa.com

Recall that we would like these to be the sequences in which di�erent Xi'scorrespond to di�erent W i's and di�erent Y i's correspond to di�erent Zi's. Fur-thermore, the W 's and Z's of the distinguishing phase should be di�erent fromthose obtained during the host phase, except in those inputs �ltered by the ar-biter. Intuitively, these sequences are \good" for the pseudorandom permutationconstruction, because distinctW 's produce distinct S's with overwhelming prob-ability. The properties of the building blocks E;F , and G then ensure that thereis a process ~J , indistinguishable from J , such that, for all J-good input-outputsequences h(X1; Y 1); : : : ; (Xm; Ym)iPr~J [p2(Y i) = ~J(p1(Xi)); 1 � i � m] � 2�`�m:More precisely, let A be a probabilistic, polynomial-time adversary that hasm1 interactions with the card during the host phase and makesm2 oracle queriesduring the distinguishing phase. The sequences we are interested in consist of(X11 ; h1x; Y 11 ; h1y); (X21 ; h2x; Y 21 ; h2y); : : : ; (Xm11 ; hm1x ; Y m11 ; hm1y)from the host phase and(Xm1+1; Y m1+1); (Xm1+2; Y m1+2); : : : ; (Xm1+m2 ; Ym1+m2)from the distinguishing phase. For any such sequence, the permutations p1 andp2 determine W 1, : : :, Wm1 , Wm1+1, : : :, Wm1+m2 and Z1, : : :, Zm1 , Zm1+1,: : :, Zm1+m2 . An encryption query (+; Xm1+i) or decryption query (�; Y m1+i)is �ltered during the distinguishing phase by B if there is a 1 � j � m1 for which(Xm1+i1 ;H(Xm1+i2 ; : : : ; Xm1+in)) = (Xj1 ; hjx)(or analogously (Y m1+i1 ;H(Y m1+i2 ; : : : ; Ym1+in)) = (Y j1 ; hjy)). Note that the ad-versary should not be able to �nd more than m1 inputs and m1 outputs that are�ltered { otherwise, the pigeonhole principle implies that the adversary wouldhave found in the distinguishing phase two encryption queries (+; Xm1+j1) 6=(+; Xm1+j2) such that (Xm1+j11 ; hm1+j1x) = (Xm1+j21 ; hm1+j2x) = (Xi; hix) forsome 1 � i � m1 and 1 � j1; j2 � m2 (or two analogous decryption queries).However, that would mean that it had broken the collision-intractable hash func-tion H.We say that a sequence is J-good for p1 and p2 if1. For all 1 � i < j � m2, if Xm1+i 6= Xm1+j and Xm1+i and Xm1+j are not�ltered by B, then Wm1+i 6= Wm1+j , and, if Y m1+i 6= Y m1+j and Y m1+iand Y m1+j are not �ltered by B, then Zm1+i 6= Zm1+j .2. For all 1 � i � m2, if Xm1+i is not �ltered by B, then Wm1+i 6= W j forall 1 � j � m1, and, if Y m1+i is not �ltered by B, then Zm1+i 6= Zj for all1 � j � m1.In other words, theW 's and Z's of the distinguishing phase are di�erent fromone another and from those of the host phase. We must show that the adversaryis not able to �nd bad sequences, except with negligible probability.18

www.manaraa.com

Lemma 9. For any permutation J , for any probabilistic, polynomial-time ad-versary A that has m1 interactions with the card during the host phase andmakes m2 oracle queries during the distinguishing phase, the probability that A�nds a sequence that is not J-good for p1 and p2 is negligible. The probabilityis computed over the choice of p1 and p2 and the random coin-ips of A. Notethat J is not necessarily secret.Proof. Let "1 be an upper bound on the probability that an adversary withA's resources breaks the collision-intractable hash function H, and let "2 be anupper bound on the probability that an adversary with A's resources breaks thenon-colliding encryption scheme. Then A's probability of �nding a sequence thatis not J-good for p1 and p2 is upper-bounded by "1 + "2.Suppose that the �rst query that witnesses the fact that this sequence is notJ-good occurs at the jth step of the distinguishing phase, and assume withoutloss of generality that it is an encryption query. We divide this event into twocases. In case 1, Property 1 is violated, i.e., there are i and j, 1 � i < j � m2,such that Xm1+i 6= Xm1+j but Xm1+i1 = Xm1+j1 and H(Xm1+i2 ; : : : ; Xm1+in) =H(Xm1+j2 ; : : : ; Xm1+jn). This means that A has broken the collision-intractablefunction H, which happens with probability at most "1. The other possibility isthat Zm1+j = Zi but (Xm1+j1 ; hm1+jx) 6= (Xi1; hix) where i (1 � i � m1 + j � 1)is either from the host phase or from the distinguishing phase. However, notethat (Xm1+j1 ; hm1+jx) did not appear explicitly before in the sequence (if it had,it would have been �ltered, or j would not be the �rst \bad location" in thesequence), but Ck1(Xm1+j1 ; hm1+jx) = Ck1(Xi1; hix). Thus A could break the non-colliding encryption scheme (Ck; Ĉk), which happens with probability at most"2. utIndistinguishability:As in the original Naor-Reingold paper, we consider what happens when J isreplaced with a \more random" process. Let ~J1 be obtained from J by replacingEk3 with a random permutation and replacing GS with a process ~G that, oninput S, produces a random string of length (n � 1) � b (i.e., a random functionf0; 1gb 7! f0; 1g(n�1)�b) and Xors the string withX2; : : : ; Xn. Let ~J2 be a randompermutation. Note that, if J is replaced with ~J2, the composition p�12 � ~J2 � p1is a random permutation for any p1 and p2.We complete the proof of Theorem 6 by showing (i) when J is replaced with~J1, the result is indistinguishable by probabilistic, polynomial-time adversaries,and (ii) when ~J1 is replaced by ~J2 the result is indistinguishable to adversariesrestricted to good sequences.Lemma 10. Suppose that, following the host phase of an attack on Scheme P,a nondeterministic choice is made between replacing the function J by ~J1 orcontinuing to use J . Then any probabilistic, polynomial-time adversary A hasonly a negligible probability of determining whether a switch was made, wherethe probability is over the choice of J; p1; p2; ~J1 and A's coin-ips.19

www.manaraa.com

Proof. Observe �rst that J can be partly transformed without detection: Sup-pose that Ek3 is replaced with a random permutation and Fk4 is replaced witha random function prior to the beginning of the host phase. This should be in-distinguishable to A, because the only information A has about Ek3 ; Dk3, andFk4 is their values (or some function of them) at some speci�c points. Thereforethe important part of a potential switch is the replacement of G by ~G.By Lemma 9, except with negligible probability, all the W 's of the distin-guishing phase are di�erent from those of the host phase and di�erent fromeach other, except those that were �ltered. These W i's are assigned a randomvalue Si. Recall that G has the property that, if S is chosen at random, thenGS(X2; : : : ; Xn) is indistinguishable from a truly random string of the samelength for any X2; : : : ; Xn, and similarly for Ĝ. In case a switch is not madebetween phases, then G (or Ĝ) produces an input that is indistinguishable froma truly random one. If a switch is made, then ~G is used, and the result is arandom and independent string (except when Si is a collision, which happenswith probability at most m2=2b). Therefore, the overall probability with whicha switch is detected is negligible. utLemma 11. Suppose that, following the host phase of an attack on Scheme P, anondeterministic choice is made between replacing J by ~J1 or replacing J by ~J2.Then any probabilistic, polynomial-time adversary A has a negligible probabilityof distinguishing between the two cases, where the probability is computed overthe choice of J; p1; p2; ~J1; ~J2, and A's coin-ips.Proof. Fix the adversary A to be the best deterministic machine, and �x p1, p2,and J . This determines the queries made during the host phase. Now considerany sequence SEQ = h(Xm1+1; Ym1+1); : : : ; (Xm1+m2 ; Y m1+m2)isuch that SEQ (together with the host phase queries) is J-good for p1 and p2.If SEQ is a possible outcome for A, given the �xed J; p1, and p2, thenPr~J1 [SEQ is produced] = 12bn � 1(2b � 1) � 2b(n�1) � � � 1(2b �m2 + 1) � 2b(n�1)and Pr~J2 [SEQ is produced] = 12bn � 12bn � 1 � � � 12bn �m2 + 1 :Therefore, Pr ~J1 [SEQ is produced] is at leastPr~J2 [SEQ is produced] � (1� m22b)m2 � Pr~J1 [SEQ is produced]:Now consider any collection C of sequences that are J-good for p1 and p2.The probabilities that a member of this collection is produced by ~J1 and ~J2 areclose, because the ratio of Pr ~J1 [C] and Pr ~J2 [C] is between 1 and 1� (m22=2b).20

www.manaraa.com

Suppose without loss of generality that, just before A has to guess whetherit is querying process ~J1 or process ~J2, the permutations p1 and p2 are revealed.This can only help A. If we consider all possible executions ofA, then with all butnegligible probability (over p1; p2), the sequence generated is J-good for p1 andp2. Partition the executions that end with an J-good sequence into C1 (those forwhichA announces 1), and C2 (those where it announces 2). Summing over p1; p2,and J , the probabilities Pr ~J1 [C1] and Pr ~J2 [C1] are close (and similarly for Pr ~J1 [C2]and Pr ~J2 [C2]). Therefore, we can conclude that ~J1 and ~J2 are indistinguishablefor A. utTo complete the proof of Theorem 6, note that p�12 � ~J2 �p1 is a random per-mutation. Thus, A has at most a negligible probability of determining whetherJ was switched with a random permutation between phases. ut6 Open QuestionsRemaining questions include:Question 1. The protocol in Section 5 requires two rounds of interaction be-tween the host and the card. Is there a secure, length-preserving RKES thatrequires only one round of interaction?Question 2. Is the existence of a one-way function su�cient for the constructionof a provably secure RKES? Note that a collision-intractable hash function isused in our constructions and that it is not known how to build such a hashfunction based only on the assumption that a one-way function exists. (See [4] fora discussion of the desirability of using UOWHFs instead of collision-intractablehash functions.)AcknowledgmentsWe thank Omer Reingold for useful discussions and the Eurocrypt '98 ProgramCommittee members for their comments.References1. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, \A Concrete Security Treatmentof Symmetric Encryption," in Proceedings of the 38th Symposium on Foundationof Computer Science, IEEE Computer Society Press, Los Alamitos, pp. 394{403,1997.2. M. Bellare, J. Kilian, and P. Rogaway, \The Security of Cipher Block Chaining," inAdvances in Cryptology { Crypto '94, Lecture Notes in Computer Science, vol. 839,Springer, Berlin, pp. 341{358, 1994.3. M. Bellare and P. Rogaway, \Provably Secure Session Key Distribution { The ThreeParty Case," in Proceedings of the 27th Symposium on Theory of Computing, ACM,New York, pp. 57{66, 1995. 21

www.manaraa.com

4. M. Bellare and P. Rogaway, \Collision Resistant Hashing, Towards MakingUOWHFs practical," in Advances in Cryptology { Crypto '97, Lecture Notes inComputer Science, vol. 1294, Springer, Berlin, pp. 470{484, 1997.5. E. Biham and A. Shamir, \Di�erential Fault Analysis of Secret Key Cryptosys-tems," in Advances in Cryptology { Crypto '97, Lecture Notes in Computer Sci-ence, vol. 1294, Springer, Berlin, pp. 513{525, 1997.6. M. Blaze, \High-Bandwidth Encryption with Low-Bandwidth Smartcards," in Pro-ceedings of the Fast Software Encryption Workshop, Lecture Notes in ComputerScience, vol. 1039, Springer, Berlin, pp. 33{40, 1996.7. D. Boneh, R. A. Demillo, and R. J. Lipton, \On the Importance of CheckingProtocols for Faults," in Advances in Cryptology { Eurocrypt '97, Lecture Notes inComputer Science vol. 1233, Springer, Berlin, pp. 37{51, 1997.8. D. Dolev, C. Dwork, and M. Naor, \Non-Malleable Cryptography," in Proceedingsof the 23rd Symposium on Theory of Computing, ACM, New York, pp. 542{552,1991. Expanded version available as Weizmann Institute Technical Report CS95-27, http://www.wisdom.weizmann.ac.il/Papers/trs/CS95-27/.9. S. Even and Y. Mansour, \A construction of a cipher from a single pseudorandompermutation," J. Cryptology, 10 (1997), pp. 151{161.10. J. Feigenbaum, \Locally Random Reductions in Interactive Complexity Theory,"in Advances in Computational Complexity Theory, DIMACS Series on DiscreteMathematics and Theoretical Computer Science, vol. 13, American MathematicalSociety, Providence, pp. 73{98, 1993.11. O. Goldreich, Foundations of Cryptography (Fragments of a Book), 1995.http://www.eccc.uni-trier.de/eccc/info/ECCC-Books/eccc-books.html12. O. Goldreich S. Goldwasser, and S. Micali, \How to Construct Random Functions,"J. of the ACM, 33 (1986), pp. 792-807.13. S. Goldwasser and S. Micali, \Probabilistic Encryption," J. Computer and SystemSciences, 28 (1984), pp. 270{299.14. J. Kilian and P. Rogaway, \How to protect DES against exhaustive key search,"in Advances in Cryptology - CRYPTO '96, Lecture Notes in Computer Science,vol. 1109, Springer, Berlin, pp. 252-267, 1996.15. M. Luby, Pseudorandomness and Cryptographic Applications, PrincetonUniversity Press, Princeton, 1996.16. S. Lucks, \On the Security of Remotely Keyed Encryption," in Proceedings of theFast Software EncryptionWorkshop, Lecture Notes in Computer Science, vol. 1267,Springer, Berlin, pp. 219{229, 1997.17. T. Matsumoto, K. Kato, and H. Imai, \Speeding Up Secret Computations withInsecure Auxiliary Devices," in Advances in Cryptology { Crypto '88, LectureNotes in Computer Science, vol. 403, Springer, Berlin, pp. 497{506, 1990.18. M. Naor and O. Reingold, \On the Construction of Pseudo-Random Permutations:Luby-Racko� Revisited," to appear in J. Cryptology. Extended abstract appearsin Proceedings of the 29th Symposium on Theory of Computing, ACM, New York,pp. 189{199, 1997.19. V. Shoup and A. Rubin, \Session Key Distribution Using Smart Cards," in Ad-vances in Cryptology { Eurocrypt '96, Lecture Notes in Computer Science vol. 1070,Springer, Berlin, pp. 321{331, 1996. 22

